Neurosteroid [3α,5α]-3-Hydroxy-pregnan-20-one Enhances the CX3CL1-CX3CR1 Pathway in the Brain of Alcohol-Preferring Rats with Sex-Specificity.
Irina BalanAdelina GruscaSamantha Lucenell ChéryBaylee R MateriaTodd K O'BuckleyA Leslie MorrowPublished in: Life (Basel, Switzerland) (2024)
This study investigates the impact of allopregnanolone ([3α,5α]3-hydroxypregnan-20-one or 3α,5α-tetrahydroprogesterone (3α,5α-THP); 10 mg/kg, IP) on fractalkine/CX3-C motif chemokine ligand 1 (CX3CL1) levels, associated signaling components, and markers for microglial and astrocytic cells in the nucleus accumbens (NAc) of male and female alcohol-preferring (P) rats. Previous research suggested that 3α,5α-THP enhances anti-inflammatory interleukin-10 (IL-10) cytokine production in the brains of male P rats, with no similar effect observed in females. This study reveals that 3α,5α-THP elevates CX3CL1 levels by 16% in the NAc of female P rats, with no significant changes observed in males. The increase in CX3CL1 levels induced by 3α,5α-THP was observed in females across multiple brain regions, including the NAc, amygdala, hypothalamus, and midbrain, while no significant effect was noted in males. Additionally, female P rats treated with 3α,5α-THP exhibited notable increases in CX3CL1 receptor (CX3CR1; 48%) and transforming growth factor-beta 1 (TGF-β1; 24%) levels, along with heightened activation (phosphorylation) of signal transducer and activator of transcription 1 (STAT1; 85%) in the NAc. Conversely, no similar alterations were observed in male P rats. Furthermore, 3α,5α-THP decreased glial fibrillary acidic protein (GFAP) levels by 19% in both female and male P rat NAc, without affecting microglial markers ionized calcium-binding adaptor molecule 1 (IBA1) and transmembrane protein 119 (TMEM119). These findings indicate that 3α,5α-THP enhances the CX3CL1/CX3CR1 pathway in the female P rat brain but not in males, primarily influencing astrocyte reactivity, with no observed effect on microglial activation.
Keyphrases
- transcription factor
- transforming growth factor
- inflammatory response
- neuropathic pain
- lipopolysaccharide induced
- epithelial mesenchymal transition
- resting state
- immune response
- cell proliferation
- spinal cord injury
- white matter
- functional connectivity
- protein protein
- anti inflammatory
- multiple sclerosis
- oxidative stress
- stress induced
- brain injury
- small molecule
- pi k akt
- cell cycle arrest
- protein kinase