Emergence of complexity in hierarchically organized chiral particles.
Wenfeng JiangZhi-Bei QuPrashant KumarDrew A VecchioYuefei WangYu MaJoong Hwan BahngKalil BernardinoWeverson Rodrigues GomesFelippe Mariano ColombariAsdrubal Lozada-BlancoMichael VekslerEmanuele MarinoAlex SimonChristopher B MurraySérgio Ricardo MunizAndré Farias de MouraNicholas A KotovPublished in: Science (New York, N.Y.) (2020)
The structural complexity of composite biomaterials and biomineralized particles arises from the hierarchical ordering of inorganic building blocks over multiple scales. Although empirical observations of complex nanoassemblies are abundant, the physicochemical mechanisms leading to their geometrical complexity are still puzzling, especially for nonuniformly sized components. We report the self-assembly of hierarchically organized particles (HOPs) from polydisperse gold thiolate nanoplatelets with cysteine surface ligands. Graph theory methods indicate that these HOPs, which feature twisted spikes and other morphologies, display higher complexity than their biological counterparts. Their intricate organization emerges from competing chirality-dependent assembly restrictions that render assembly pathways primarily dependent on nanoparticle symmetry rather than size. These findings and HOP phase diagrams open a pathway to a large family of colloids with complex architectures and unusual chiroptical and chemical properties.