Login / Signup

Climatic breadth of calling behaviour in two widespread Neotropical frogs: Insights from humidity extremes.

Anaïs BonnefondElodie A CourtoisJérôme SueurLarissa Sayuri Moreira SugaiDiego Llusia
Published in: Global change biology (2020)
Climate change is severely altering precipitation regimes at local and global scales, yet the capacity of species to cope with these changes has been insufficiently examined. Amphibians are globally endangered and particularly sensitive to moisture conditions. For mating, most amphibian species rely on calling behaviour, which is a key weather-dependent trait. Using passive acoustics, we monitored the calling behaviour of two widespread Neotropical frogs in 12 populations located at the humidity extremes but thermal mean of the species distribution. Based on 2,554 hr of recordings over a breeding season, we found that both the aquatic species Pseudis paradoxa and the arboreal species Boana raniceps exhibited calling behaviour at a wide range of relative humidity. Calling humidity was significantly lower in conspecific populations subjected to drier conditions, while calling temperature did not differ between populations or species. Overall, no variation in climatic breadth was observed between large and small choruses, and calling behaviour was scarcely detected during the driest, hottest and coldest potential periods of breeding. Our results showed that calling humidity of the studied species varies according to the precipitation regime, suggesting that widespread Neotropical anurans may have the capacity to exhibit sexual displays in different climatic environments. Regardless of the underlying mechanism (plasticity or local adaptation), which should be determined by common garden experiments, a wide and population-specific climatic breadth of calling behaviour may assist species to deal with changing humidity conditions. To our knowledge, this is the first study to explore the response capacity of anurans to perform calling behaviour under contrasting precipitation regimes.
Keyphrases
  • genetic diversity
  • climate change
  • healthcare
  • gene expression
  • risk assessment
  • dna methylation