Login / Signup

Substrates Modulate Charge-Reorganization Allosteric Effects in Protein-Protein Association.

Shirsendu GhoshKoyel Banerjee-GhoshDorit LevyInbal RivenRon NaamanGilad Haran
Published in: The journal of physical chemistry letters (2021)
Protein function may be modulated by an event occurring far away from the functional site, a phenomenon termed allostery. While classically allostery involves conformational changes, we recently observed that charge redistribution within an antibody can also lead to an allosteric effect, modulating the kinetics of binding to target antigen. In the present work, we study the association of a polyhistidine tagged enzyme (phosphoglycerate kinase, PGK) to surface-immobilized anti-His antibodies, finding a significant Charge-Reorganization Allostery (CRA) effect. We further observe that PGK's negatively charged nucleotide substrates modulate CRA substantially, even though they bind far away from the His-tag-antibody interaction interface. In particular, binding of ATP reduces CRA by more than 50%. The results indicate that CRA is affected by the binding of charged molecules to a protein and provide further insight into the significant role that charge redistribution can play in protein function.
Keyphrases
  • protein protein
  • small molecule
  • binding protein
  • solar cells
  • amino acid
  • molecular dynamics
  • dna binding
  • signaling pathway
  • mass spectrometry
  • molecular dynamics simulations