Gut microbiota diversity is associated with cardiorespiratory fitness in post-primary treatment breast cancer survivors.
Stephen J CarterGary R HunterJ Walker BlackstonNianjun LiuElliot J LefkowitzWilliam J Van Der PolCasey D MorrowJesseca A PaulsenLaura Q RogersPublished in: Experimental physiology (2019)
Cancer treatment uniquely triggers multiple physiological shifts detrimental to overall health. Although previous research indicates a link between the gut microbiota and cardiorespiratory fitness, it is unclear whether these findings are attributable to potential underlying effects of percentage body fat or free-living activity energy expenditure (AEE). The microbe composition of faecal specimens from 37 breast cancer survivors was determined using 16S microbiome analyses. Individual-sample microbiota diversity (α-diversity) and between-sample community differences (β-diversity) were examined. Peak oxygen uptake ( V ̇ O 2 peak ) was estimated from a graded exercise test consistent with the modified Naughton protocol, in which exercise terminates at 85% of age-predicted maximal heart rate. The AEE was measured over 10 days using doubly labelled water, wherein the percentage body fat was calculated from total body water. Pearson correlations revealed α-diversity indices (Chao1, observed species, PD whole tree and Shannon) to be positively associated with V ̇ O 2 peak (r = 0.34-0.51; P < 0.05), whereas the percentage of maximal heart rate during stages 1-4 of the graded exercise test (r = -0.34 to -0.50; P < 0.05) and percentage body fat (r = -0.32 to -0.41; P < 0.05) were negatively associated with the same α-diversity indices. Multiple linear regression models showed that V ̇ O 2 peak accounted for 22 and 26% of the variance in taxonomic richness (observed species) and phylogenic diversity after adjustment for percentage body fat and menopausal status. Unweighted UniFrac (β-diversity) was significant for several outcomes involving cardiorespiratory fitness, and significant taxa comparisons were found. Associations between gut microbiota and free-living AEE were not found. Results from the present work suggest that cardiorespiratory fitness, not physical activity, is a superior correlate of gut microbiota diversity.