Login / Signup

Does selection for behavioral and physiological performance traits alter glucocorticoid responsiveness in bank voles?

Małgorzata M LipowskaEdyta T SadowskaUlf BauchingerWolfgang GoymannBarbara Bober-SowaPaweł Koteja
Published in: The Journal of experimental biology (2020)
One of the key elements of an animal's Darwinian fitness is its ability to adequately respond to and cope with challenging situations. Glucocorticoid hormones, such as corticosterone, affect an organism's ability to overcome such challenges. We hypothesized that changes in the glucocorticoid response curve contribute to the evolution of increased performance during challenging conditions, and tested it on bank voles (Myodes glareolus) from a multidirectional artificial selection experiment, which involves lines selected for high aerobic exercise metabolism achieved during swimming (A - Aerobic), predatory behavior towards a cricket (P - Predatory) and ability to maintain body mass on a low-quality herbivorous diet (H - Herbivorous), as well as unselected control lines (C - Control). We elicited a glucocorticoid response either by restraining the animal or by maximum pharmacological stimulation, and measured plasma corticosterone levels at baseline, during the response and during the recovery phase. Response-level corticosterone was higher in females, and recovery from maximal level was faster than that of males. Selection did not affect baseline or stress-induced corticosterone levels, but it decreased the maximum corticosterone level in Aerobic and Predatory lines, reducing the difference between stress-induced and maximum levels. Recovery from restraint-induced corticosterone level tended to be slower in the Herbivorous than in the other lines, an effect that was stronger in females than in males. In conclusion, successful selection for increased performance in challenging conditions was not associated with changes in absolute values of the glucocorticoid response to stress, but can affect other characteristics of the glucocorticoid response curve.
Keyphrases
  • body composition
  • stress induced
  • physical activity
  • oxidative stress
  • gene expression
  • dna methylation
  • weight loss
  • high intensity
  • blood pressure
  • heart rate
  • diabetic rats
  • heat stress