Login / Signup

Surface Modification of Poly(dimethylsiloxane) with Polydopamine and Hyaluronic Acid To Enhance Hemocompatibility for Potential Applications in Medical Implants or Devices.

Peng XueQian LiYuan LiLihong SunLei ZhangZhigang XuYue Jun Kang
Published in: ACS applied materials & interfaces (2017)
Poly(dimethylsiloxane) (PDMS) has been widely utilized in micro-electromechanical systems (MEMS) and implantable devices. To improve the hemocompatibility of a PDMS-based implant, a facile technique was developed by modifying PDMS with a hyaluronic acid (HA) and polydopamine (PDA) composite (HA/PDA). Under appropriate ratio of HA to PDA, platelet adhesion and activation were considerably reduced on modified PDMS substrates, indicating an enhanced hemocompatibility compared to native PDMS or those coated with HA or PDA solely. HA/PDA coating also posed minimal cytotoxicity on the adhesion and proliferation of endothelial cells (HUVECs). The anti-inflammation effect of the modified PDMS surface was characterized based on the expression of critical cytokines in adherent macrophages. This study revealed that the hemocompatibility, cytotoxicity, and anti-inflammation properties could be tailored conveniently by adjusting the ratio of HA and PDA composite on the modified PDMS surface, which has an exceptional potential as the core or packaging material for constructing implantable devices in biomedical applications.
Keyphrases
  • hyaluronic acid
  • endothelial cells
  • oxidative stress
  • healthcare
  • escherichia coli
  • risk assessment
  • gold nanoparticles
  • binding protein