Lateral epitaxial growth of two-dimensional organic heterostructures.
Qiang LvXue-Dong WangYue YuChao-Fei XuYan-Jun YuXing-Yu XiaMin ZhengLiang-Sheng LiaoPublished in: Nature chemistry (2023)
Two-dimensional organic lateral heterostructures (2D OLHs) are attractive for the fabrication of functional materials. However, it is difficult to control the nucleation, growth and orientation of two distinct components. Here we report the combination of two methods-liquid-phase growth and vapour-phase growth-to synthesize 2D OLHs from perylene and a perylenecarboxaldehyde derivative, with a lateral size of ~20 μm and a tunable thickness ranging from 20 to 400 nm. The screw dislocation growth behaviour of the 2D crystals shows the spiral arrangement of atoms within the crystal lattice, which avoids volume expansion and contraction of OLH, thereby minimizing lateral connection defects. Selective control of the nucleation and sequential growth of 2D crystals leads to structural inversion of the 2D OLHs by the vapour-phase growth method. The resulting OLHs show good light-transport capabilities and tunable spatial exciton conversion, useful for photonic applications. This synthetic strategy can be extended to other families of organic polycyclic aromatic hydrocarbons, as demonstrated with other pyrene and perylene derivatives.