Login / Signup

Facile Synthesis of Ag/AgVO3/N-rGO Hybrid Nanocomposites for Electrochemical Detection of Levofloxacin for Complex Biological Samples Using Screen-Printed Carbon Paste Electrodes.

Tata Sanjay Kanna SharmaKuo-Yuan Hwa
Published in: Inorganic chemistry (2021)
Silver vanadate nanorods (β-AgVO3) with silver nanoparticles (Ag-NPs) decorated on the surface of the rods were synthesized by using simple hydrothermal technique and later anchored onto nitrogen-doped reduced graphene oxide (N-rGO) to make a novel nanocomposite. Experimental analyses were carried out to identify the electronic configuration by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis, which revealed monoclinic patterns of the C12/m1 space group with Wulff construction forming beta silver vanadate (β-AgVO3) crystals with optical density and phase transformations. Ag nucleation showed consistent results with metallic formation and electronic changes occurring in [AgO5] and [AgO3] clusters. Transmission electron microscopy and field-emission scanning electron microscopy with elemental mapping and EDX analysis of the morphology reveals the nanorod structure for β-AgVO3 with AgNPs on the surface and sheets for N-rGO. Additionally, a novel electrochemical sensor is constructed by using Ag/AgVO3/N-rGO on screen-printed carbon paste electrodes for the detection of antiviral drug levofloxacin (LEV) which is used as a primary antibiotic in controlling COVID-19. Using differential pulse voltammetry, LEV is determined with a low detection limit of 0.00792 nm for a linear range of 0.09-671 μM with an ultrahigh sensitivity of 152.19 μA μM-1 cm-2. Furthermore, modified electrode performance is tested by real-time monitoring using biological and river samples.
Keyphrases