Mitigating the Internal Ion Migration of Organic-Inorganic Hybrid Perovskite by a Graphene Oxide Interlayer.
Chang WangYichen DouYi WangFuzhi HuangZhiliang KuJianfeng LuYi-Bing ChengPublished in: ACS applied materials & interfaces (2022)
Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great research attention due to their outstanding optoelectronic properties. The low-temperature synthesizing process of organic-inorganic hybrid perovskites can provide a significant advantage of reducing the manufacturing cost of solar cells. However, at the same time, this also brings challenges to PSCs in the form of long-term stability. Because of the low vacancy formation energy, organic-inorganic hybrid perovskites suffer from serious ion migration issue. Also, this ion migration will lead to a series of stability problems, which can hardly be addressed by encapsulation. Currently, modifying the surface of perovskite by an ion-blocking layer is a common strategy for achieving highly stable PSCs. These strategies could effectively address the stability issues caused by the interfacial ion diffusion between perovskite and the charge transport layer. However, the ion migration inside the perovskite layer could be still a knotty problem, which is difficult to be solved through surface modification. Herein, we propose a novel strategy to mitigate the internal ion migration by inserting two-dimensional graphene oxide (GO) into a perovskite layer. Close-space sublimation and ultrasonic spray coating were employed to prepare perovskite and GO layers, respectively. We found that the ion migration in the as-prepared perovskite/GO/perovskite can be successfully mitigated by the GO interlayer. As a result, the champion PSC with a GO interlayer maintained 85% of its initial power conversion efficiency (PCE) after 96 h of continuous illumination. By contrast, the efficiency of the PSC without a GO interlayer declined rapidly and maintained only 50% of the initial value. We believe that this novel interlayer strategy could provide a new idea and approach to preparing highly stable PSCs.