Login / Signup

Boosting Photocatalytic Performance of Inactive Rutile TiO2 Nanorods under Solar Light Irradiation: Synergistic Effect of Acid Treatment and Metal Oxide Co-catalysts.

Love Kumar DhandoleMahadeo A MahadikSu-Gyeong KimHee-Suk ChungYoung-Seok SeoMin ChoJung Ho RyuJum Suk Jang
Published in: ACS applied materials & interfaces (2017)
In the present work, we accomplish the boosting of photocatalytic performance by the synergistic effect of acid treatment and transition metal oxide co-catalysts on molten salt rutile TiO2 nanorods. FT-IR and XPS (oxygen deconvolution) results confirmed that the amount of hydroxyl groups increased on the surface of rutile TiO2 nanorods (TO-NRs) after acid treatment. HR-TEM analysis revealed fine dispersion of metal oxide on the surface of acid treated TiO2 nanorods (ATO-NRs). The photocatalytic activities of as-prepared (TO-NRs), acid treated (ATO-NRs), metal oxide loaded (MTO-NRs), and both acid treated and metal oxide loaded (MATO-NRs) nanorods were compared based on the rate kinetics and dye degradation efficiencies. Cobalt oxide (1 wt %) loaded and 1.0 M acid treated TiO2 nanorods (Co/ATO-NR) exhibited the higher photocatalytic degradation efficiency for Orange-II dye degradation and inactivation of S. typhimurium pathogen compared to other photocatalysts under solar irradiation. Photoelectrochemical analysis demonstrated that the charge transfer process in Co/ATO-NR is significantly higher than that in the untreated samples. The improved photocatalytic activity of inactive TO-NRs might be due to enhanced charge transfer of finely dispersed metal oxides on the OH-rich surface of acid treated TiO2 nanorods.
Keyphrases
  • visible light
  • reduced graphene oxide
  • highly efficient
  • quantum dots
  • drug delivery
  • transition metal
  • cancer therapy
  • newly diagnosed
  • single cell
  • candida albicans
  • wound healing
  • metal organic framework