Login / Signup

Tackling local ecological homogeneity: Finding intraspecific trait variability in local populations of Mediterranean plants.

Lorenzo Maria IoziaLaura Varone
Published in: Ecology and evolution (2023)
Local homogeneity, in ecology, is the often undisclosed assumption that variability within populations is negligible or mostly distributed evenly. In large areas, this can lead to the aggregation of different populations without regard for their unique needs and characteristics, such as drought sensitivity and functional trait distributions. Here, we discuss whether this assumption can be justified, and we hypothesize that discerning the source of variation between plasticity and adaptation could be a feasible approach to formulate an informed decision. We test this hypothesis on plants, resorting to a common garden experiment to determine the source of variation of several plant functional traits at a local scale (~60 km) of three wild species: Quercus ilex , Pistacia lentiscus , and Cistus salviifolius . Individuals of each species were sourced from three key sites chosen along a local aridity gradient. Our approach led to the rejection of the local homogeneity assumption for Q. ilex and C. salviifolius at this scale due to the adaptive divergence observed among neighboring populations. This case study provides evidence that addressing local homogeneity can highlight diverging populations in a relatively simple way. We conclude that gathering empirical evidence on intraspecific variability is a feasible approach that can provide researchers with solid bases to decide whether to adopt the local homogeneity assumption or not.
Keyphrases
  • genetic diversity
  • resting state
  • functional connectivity
  • genome wide
  • decision making
  • human health