Expanded single-color barcoding in microspheres with fluorescence anisotropy for multiplexed biochemical detection.
Wenyu HuangYu ChengJingying ZhaiYuemin QinWeian ZhangXiaojiang XiePublished in: The Analyst (2023)
Single-color barcoding strategies could break the limits of spectral crosstalk in conventional intensity-based fluorescence barcodes. Fluorescence anisotropy (FA), a self-referencing quantity able to differentiate spectrally similar fluorophores, is highly attractive in designing fluorescent barcodes within a limited emission window. In this study, FA-based encoding of polystyrene (PS) microspheres was realized for the first time. The FA signals of fluorophores were stabilized inside PS microspheres owing to hampered rotational motion. Fluorescent labels were incorporated with similar emission but different structures, symmetries, and lifetimes. On the one hand, Förster Resonance Energy Transfer (FRET) including homo-FRET and hetero-FRET resulted in a decrease of steady-state FA with increasing dye loading, converting conventional intensity-based codes into FA-based codes. On the other hand, mixing dyes with different intrinsic FA values generated different FA values at the same fluorescence intensity level. Single color 5-plex FA-encoded microspheres were demonstrated and decoded on a homemade microscopic FA imaging platform in real time. The FA-encoded microspheres were successfully applied to detect the oligonucleotide of the foodborne bacterium, Bacillus cereus , without spectral crosstalk between the encoding and reporting dyes. Overall, FA-based encoding with an expanded coding capacity in the FA dimension holds great potential in multiplexed high-throughput chemical and biological analyses.