Login / Signup

Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future.

Xiaojun ShenChaofeng ZhangHuizhen LiuFeng Wang
Published in: Chemical Society reviews (2022)
Due to the depletion of fossil sources, it is imperative to develop a sustainable and carbon-neutral biorefinery for supporting the fuel and chemical supply in modern society. Lignin, the only renewable aromatic source, is still an underutilized component in lignocellulose. Very recently, it has been found that hydrogenolysis is a promising technology for lignin valorization. However, high-pressure H 2 is necessary during lignin hydrogenolysis, resulting in safety problems. Furthermore, H 2 is mainly produced from steam reforming of fossil sources in industry, which makes the conversion of renewable lignin unsustainable and costly. Plentiful aliphatic hydroxyl and methoxy groups exist in native lignin and offer a renewable alternative to H 2 , and can be hydrogen sources for the depolymerization and upgradation of lignin via the intramolecular catalytic transfer hydrogenation. The hydrogen source in situ generated from lignin is a type of green hydrogen, decreasing the carbon footprint. The purpose of this review is to provide a summary and perspective of lignin valorization via self-transfer hydrogenolysis, mainly focusing on a comprehensive understanding of the mechanism of catalytic self-transfer hydrogenolysis at the molecular level and developing highly effective catalytic systems. Moreover, some opportunities and challenges within this attractive field are given to discuss future research directions.
Keyphrases
  • ionic liquid
  • drinking water
  • mental health
  • crystal structure