Molecular imprinting resonance light scattering nanoprobes based on pH-responsive metal-organic framework for determination of hepatitis A virus.
Lianghui LuoFeng ZhangChunyan ChenChangqun CaiPublished in: Mikrochimica acta (2020)
Molecularly imprinted polymer (HM@MIP) nanoprobes were designed form the pH-responsive polymer (dimethylaminoethyl methacrylate (DMA)) and MIL-101. This probe was applied to the selective determination of hepatitis A virus (HAV) through Resonance light scattering (RLS) technique. DMA adjusts pH of the system to facilitate the capture and release of virus by HM@MIPs as anticipated. And it results in the enhancement or weaken of RLS intensity. According to RLS intensity at 470 nm, a linear concentration of 0.02-2.0 nmol·L-1 and a limit of detection of 0.1 pmol·L-1 were obtained within 20 min. The excellent recoveries ranges from 88% to 107%, and it indicates the prominent ability of the HM@MIPs to determination HAV in human serum and their potential ability to determination virus in real applications. Graphical abstractPrinciple of preparation of the HM@MIPs and detection of virus.