Login / Signup

Model Complexes Elucidate the Role of the Proximal Hydrogen-Bonding Network in Cytochrome P450s.

Andrew P HuntSubhra SamantaMatthew R DentMichael W MilbauerJudith N BurstynNicolai Lehnert
Published in: Inorganic chemistry (2020)
Cytochrome (Cyt) P450s are an important class of enzymes with numerous functions in nature. The unique reactivity of these enzymes relates to their heme b active sites with an axially bound, deprotonated cysteine (a "cysteinate") ligand (chemically speaking a thiolate). The heme-thiolate active sites further contain a number of conserved hydrogen-bonds (H-bonds) to the bound cysteinate ligand, which have been proposed to tune and stabilize the Fe-S bond. In this work, we present the low-temperature preparation of five ferric heme-thiolate nitric oxide (NO) model complexes that contain one tunable hydrogen-bond to the bound thiolate ligand. We show that the presence of a H-bond has a dramatic effect in stabilizing the thiolate ligand against direct reaction with NO. This observation reinforces the important protective role of H-bonds in Cyt P450s. We further demonstrate that H-bond strength tunes thiolate donor strength, which, in turn, controls the N-O and Fe-NO stretching frequencies and hence, bond strengths. We observe a direct correlation between the Fe-NO and N-O stretching frequencies, indicative of a thiolate σ-trans effect (interaction). Here, very small changes in H-bond strength lead to a surprisingly large effect on the FeNO unit. This result implies that subtle changes in the Cys-pocket of a Cyt P450 can strongly affect reactivity. Importantly, using the Fe-NO/N-O correlation established here, the thiolate donor strength in heme-thiolate enzyme active sites and model complexes can be quantified in a straightforward way, using NO as a probe. This spectroscopic correlation provides a quantitative measure of the thiolate's "push" effect, which is important in O2-activation (Compound I formation) in Cyt P450s in general.
Keyphrases
  • nitric oxide
  • living cells
  • transition metal
  • high resolution
  • sensitive detection
  • molecularly imprinted