Continuous Monitoring of Interstitial Fluid Glucose Responses to Endurance Exercise with Different Levels of Carbohydrate Intake.
Chiyori HiromatsuNaoto KasaharaChao-An LinFeifei WangKazushige GotoPublished in: Nutrients (2023)
We compared the 24 h changes in interstitial fluid glucose concentration (IGC) following a simulated soccer match between subjects consuming a high-carbohydrate (HCHO; 8 g/kg BW/day) diet and those consuming a moderate-carbohydrate (MCHO; 4 g/kg BW/day) diet. Eight active healthy males participated in two different trials. The subjects were provided with the prescribed diets from days 1 to 3. On day 3, the subjects performed 90 min (2 bouts × 45 min) of exercise simulating a soccer match. The IGC of the upper arm was continuously monitored from days 1 to 4. No significant difference in the IGC was observed between trials during exercise. The total area under the curve (t-AUC) value during exercise did not significantly differ between the HCHO (9719 ± 305 mg/dL·90 min) and MCHO (9991 ± 140 mg/dL·90 min). Serum total ketone body and beta-hydroxybutyrate concentrations were significantly higher in the MCHO than in the HCHO after a second bout of exercise. No significant differences in the IGC were observed between trials at any time point during the night after exercise (0:00-7:00). In addition, t-AUC value during the night did not significantly differ between the HCHO (32,378 ± 873 mg/dL·420 min) and MCHO (31,749 ± 633 mg/dL·420 min). In conclusion, two days of consuming different carbohydrate intake levels did not significantly affect the IGC during a 90 min simulated soccer match. Moreover, the IGC during the night following the exercise did not significantly differ between the two trials despite the different carbohydrate intake levels (8 vs. 4 g/kg BW/day).