Login / Signup

Using Hybrid PDI-Fe 3 O 4 Nanoparticles for Capturing Aliphatic Alcohols: Halogen Bonding vs. Lone Pair-π Interactions.

María de Las Nieves PiñaAlberto LeónAntonio FronteraJeroni MoreyAntonio Bauzá
Published in: International journal of molecular sciences (2024)
In this study, Fe 3 O 4 nanoparticles (FeNPs) decorated with halogenated perylene diimides (PDIs) have been used for capturing VOCs (volatile organic compounds) through noncovalent binding. Concretely, we have used tetrachlorinated/brominated PDIs as well as a nonhalogenated PDI as a reference system. On the other hand, methanol, ethanol, propanol, and butanol were used as VOCs. Experimental studies along with theoretical calculations (the BP86-D3/def2-TZVPP level of theory) pointed to two possible and likely competitive binding modes (lone pair-π through the π-acidic surface of the PDI and a halogen bond via the σ-holes at the Cl/Br atoms). More in detail, thermal desorption (TD) experiments showed an increase in the VOC retention capacity upon increasing the length of the alkyl chain, suggesting a preference for the interaction with the PDI aromatic surface. In addition, the tetrachlorinated derivative showed larger VOC retention times compared to the tetrabrominated analog. These results were complemented by several state-of-the-art computational tools, such as the electrostatic surface potential analysis, the Quantum Theory of Atoms in Molecules (QTAIM), as well as the noncovalent interaction plot (NCIplot) visual index, which were helpful to rationalize the role of each interaction in the VOC···PDI recognition phenomena.
Keyphrases
  • molecular dynamics
  • ionic liquid
  • density functional theory
  • binding protein
  • dna binding
  • risk assessment
  • climate change
  • gold nanoparticles
  • monte carlo
  • human health
  • transcription factor
  • case control