Login / Signup

A simple paper-based approach for arsenic determination in water using hydride generation coupled with mercaptosuccinic-acid capped CdTe quantum dots.

Oraphan ThepmaneeKanlaya Prapainop KatewongsaObnithi NopphaNuanlaor RattanawimanwongWeena SiangprohOrawon ChailapakulKriangsak Songsrirote
Published in: Analytical methods : advancing methods and applications (2021)
This research aims to develop a simple paper-based device for arsenic detection in water samples where a hydride generation technique coupled with mercaptosuccinic acid-capped CdTe quantum dots (MSA-CdTe QDs) as a detection probe was applied to the detection system. MSA-CdTe QDs were coated on a paper strip, inserted into the cover cap of a reaction bottle, to react with the developed arsine gas. Fluorescent emission of the QDs was quenched upon the presence of arsenic in solutions, whereby only a small amount of the MSA-CdTe QDs was required. The excitation and emission wavelengths for fluorescent detection were 278.5 nm and 548.5 nm, respectively. The proposed system provided a limit of detection of 0.016 mg L-1 and a limit of quantitation of 0.053 mg L-1, and a detection range of 0.05-30.00 mg L-1. In addition, the tolerance level of the detection approach to interference by other vapor-generated species was successfully improved by placing another paper strip coated with a solution of saturated lead acetate in front of the detection paper strip. This developed approach offered a simple and fast, yet accurate and selective detection of arsenic contaminated in water samples. In addition, the mechanism of fluorescent quenching was also proposed.
Keyphrases
  • quantum dots
  • label free
  • loop mediated isothermal amplification
  • sensitive detection
  • real time pcr
  • drinking water
  • living cells
  • energy transfer
  • risk assessment
  • room temperature
  • fluorescent probe