Login / Signup

Kinetic and reactivity of gas-phase reaction of acyclic dienes with hydroxyl radical in the 273-318 K temperature range.

Chenyang XueXinmiao XuHan LyuYunfeng LiYangang RenJinhe WangYujing MuAbdelwahid MelloukiZongzheng Yang
Published in: RSC advances (2024)
As dienes contain two C[double bond, length as m-dash]C bonds, theoretically, they are much more chemically reactive with hydroxyl radical (˙OH) than alkenes and alkanes, and the reaction with ˙OH is one of the main atmospheric degradation routes of dienes during the daytime. In our work, rate coefficients of three types of acyclic dienes: conjugated as 3-methyl-1,3-pentadiene (3M13PD), isolated as 1,4-hexadiene (14HD), and cumulated as 1,2-pentadiene (12PD) reaction with ˙OH were measured in the temperature range of 273-318 K and 1 atm using the relative rate method. At 298 ± 3 K, the rate coefficients for those reactions were determined to be k 3M13PD+OH = (15.09 ± 0.72) × 10 -11 , k 14HD+OH = (9.13 ± 0.62) × 10 -11 , k 12PD+OH = (3.34 ± 0.40) × 10 -11 (as units of cm 3 per molecule per s), in the excellent agreement with values of previously reported. The first measured temperature dependence for 3M13PD, 14HD and 12PD reaction with ˙OH can be expressed by the following Arrhenius expressions in units of cm 3 per molecule per s: k 3M13PD+OH = (8.10 ± 2.23) × 10 -11  exp[(173 ± 71)/ T ]; k 14HD+OH = (9.82 ± 5.10) × 10 -12  exp[(666 ± 123)/ T ]; k 12PD+OH = (1.13 ± 0.87) × 10 -12  exp[(1038 ± 167)/ T ] (as units of cm 3 per molecule per s). The kinetic discussion revealed that the relative position between these two C[double bond, length as m-dash]C could significantly affect the reactivity of acyclic dienes toward ˙OH. A simple structure-activity relationship (SAR) method was proposed to estimate the reaction rate coefficients of acyclic dienes with ˙OH.
Keyphrases
  • dna damage
  • oxidative stress
  • electron transfer
  • particulate matter
  • depressive symptoms
  • dna repair