Dual-comb spectroscopy of ammonia formation in non-thermal plasmas.
Ibrahim SadiekAdam J FleisherJakob HaydenXinyi HuangAndreas HugiRichard EngelnNorbert LangJean-Pierre H van HeldenPublished in: Communications chemistry (2024)
Plasma-activated chemical transformations promise the efficient synthesis of salient chemical products. However, the reaction pathways that lead to desirable products are often unknown, and key quantum-state-resolved information regarding the involved molecular species is lacking. Here we use quantum cascade laser dual-comb spectroscopy (QCL-DCS) to probe plasma-activated NH 3 generation with rotational and vibrational state resolution, quantifying state-specific number densities via broadband spectral analysis. The measurements reveal unique translational, rotational and vibrational temperatures for NH 3 products, indicative of a highly reactive, non-thermal environment. Ultimately, we postulate on the energy transfer mechanisms that explain trends in temperatures and number densities observed for NH 3 generated in low-pressure nitrogen-hydrogen (N 2 -H 2 ) plasmas.