In Situ Synthesis of Gold Nanoparticles/Metal-Organic Gels Hybrids with Excellent Peroxidase-Like Activity for Sensitive Chemiluminescence Detection of Organophosphorus Pesticides.
Li HeZhong Wei JiangWei LiChun Mei LiCheng Zhi HuangYuan-Fang LiPublished in: ACS applied materials & interfaces (2018)
Until now, despite much progress in the study of metal-organic gels (MOGs), the modification of transition-metal containing MOGs with noble metal nanoparticles (NPs) is far from fully developed. Herein, iron-based MOGs nanosheet hybrids with gold NPs (AuNPs) immobilization were first synthesized by a facile in situ grown strategy at ambient conditions. It is found that the as-prepared AuNPs/MOGs (Fe) hybrids exhibited enhanced mimicking peroxidase-like activity, making them endowed with outstanding performance in chemiluminescence (CL) field in the presence of H2O2. The remarkable CL enhancement by AuNPs/MOGs (Fe) hybrids was attributed to the modification of AuNPs on MOGs (Fe) nanosheets, which could synergistically accelerate the CL reaction by speeding up the generation of OH•, O2•-, and 1O2. Accordingly, a sensitive CL detection of organophosphorus pesticides was successfully achieved by the AuNPs/MOGs (Fe) hybrids CL enhancing system in the range of 5-800 nM with a detection limit of 1 nM. We envision that this highly active and novel enzyme mimetic catalyst can be applicable to other extended AuNPs/MOGs (Fe) hybrid-based CL systems for sensitive detection of various analytes.
Keyphrases
- sensitive detection
- metal organic framework
- loop mediated isothermal amplification
- visible light
- quantum dots
- gold nanoparticles
- transition metal
- reduced graphene oxide
- label free
- risk assessment
- real time pcr
- highly efficient
- photodynamic therapy
- aqueous solution
- hydrogen peroxide
- mass spectrometry
- molecularly imprinted
- oxide nanoparticles
- high resolution
- water soluble