Cavity Lasing Characteristics of Thioflavin T and Thioflavin X in Different Solvents and Their Interaction with DNA for the Controlled Reduction of a Light Amplification Threshold in Solid-State Biofilms.
Konstantin RusakovS DemianiukE JalonickaPiotr HanczycPublished in: ACS applied optical materials (2023)
The lasing characteristics of Thioflavin T (ThT) and Thioflavin X (ThX) dyes were investigated in solvents with increasing viscosity: water, ethanol, butanol, ethylene glycol, and glycerol and three forms of DNA (double-helix natural, fragmented, and aggregated). The results identified that lasing thresholds and photostability depend on three critical factors: the solvation shell surrounding dye molecules, the organization of their dipole moments, which is driven by the DNA structure, and the molecules diffusion coefficient in the excitation focal spot. The research highlights that dye doped to DNA accumulated in binding sites fosters long-range dye orientation, facilitating a marked reduction of lasing thresholds in the liquid phase as well as amplified spontaneous emission (ASE) thresholds in the solid state. Leveraging insights from lasing characteristics obtained in liquid, ASE in the solid state was optimized in a controlled way by changing the parameters influencing the DNA structure, i.e., magnesium salt addition, heating, and sonication. The modifications led to a large decrease in the ASE thresholds in the dye-doped DNA films. It was shown that the examination of lasing in cavities can be useful for preparing optical materials with improved architectures and functionalities for solid-state lasers.