Login / Signup

Insights into the nucleotide composition and codon usage pattern of human tumor suppressor genes.

Tarikul Huda MazumderArif UddinSupriyo Chakraborty
Published in: Molecular carcinogenesis (2019)
Tumor suppressor genes encode different proteins that inhibit the uncontrolled proliferation of cell growth and tumor development. To acquire clues for predicting gene expression level, it is essential to understand the codon usage bias (CUB) of genes to characterize genome which possesses its own compositional characteristics and unique coding sequences. We used bioinformatic tools to analyze the codon usage patterns of 637 human tumor suppressor genes as no work was reported earlier. The mean effective number of codons of these genes was 48, indicating low CUB. Our results exhibited a significant positive correlation among different nucleotide compositions and the codons ending with C base was most frequently used along with the most over-represented codon CTG and GTG codifying leucine and valine amino acid, respectively, in human tumor suppressor genes. The neutrality plot showed a significant positive correlation (Pearson, r = 0. 646; P < .01) suggesting that mutation on GC bias might affect the CUB. However, the linear regression coefficient of GC12 on GC3 in human tumor suppressor genes suggested that natural selection played a major role while mutation pressure played a minor role in the codon usage patterns of tumor suppressor genes in human. Our study would throw light into the factors that affect CUB and the codon usage patterns in the human tumor suppressor genes.
Keyphrases