Login / Signup

Ligand-induced transition in conformations of vicinal cysteine disulfides in proteins.

K Kasi Amarnath ReddyMuddagoni JayashreePanchada Ch V GovinduKonkallu Hanumae Gowd
Published in: Proteins (2021)
Vicinal cysteine disulfides are thought to be associated with specific conformations of cysteine disulfides due to the restricted rotation of single bonds in an eight-membered cyclic disulfide loop. Conformations of vicinal cysteine disulfides are analyzed using χ1 , χ2 , χ3 , χ2 ', χ1 ' torsion angles in the crystal structures of proteins retrieved from Protein Data Bank (PDB). 85% of vicinal disulfides have (+, -)LHStaple conformation with trans configuration of the peptide bond and 9% have (-, -)RHStaple conformation with cis configured peptide bond. Conformational analysis of dipeptide Cys-Cys vicinal disulfide by density functional theory (DFT) further supported (+, -)LHStaple, (-, -)RHStaple, and (+, +)RHStaple as the preferred conformations of vicinal disulfides. Interestingly, the rare conformations of vicinal disulfides are observed in the ligand-bound forms of proteins and have higher disulfide strain energy. Conformations of vicinal disulfides in palmitoyl protein thioesterase 1, AChBP, and α7 nicotinic receptor are changed from preferred (+, -)LHStaple to rare (+, -)AntiLHHook/(+, -)AntiRHHook/(+, +)RHStaple conformation due to binding of ligands. Surprisingly, ligands are proximal to the vicinal disulfides in protein complexes that exhibited rare conformations of vicinal disulfides. The report has identified (+, -) LHStaple/(-, -) RHStaple as the hallmark conformations of vicinal disulfides and unraveled ligand-induced transition in conformations of vicinal cysteine disulfides in proteins.
Keyphrases
  • density functional theory
  • molecular dynamics simulations
  • molecular dynamics
  • fluorescent probe
  • living cells
  • diabetic rats
  • oxidative stress
  • high glucose
  • protein protein
  • endothelial cells
  • artificial intelligence