Login / Signup

Solvent-Dependent Assembly and Magnetic Relaxation Behaviors of [Cu4I3] Cluster-Based Lanthanide MOFs: Acting as Efficient Catalysts for Carbon Dioxide Conversion with Propargylic Alcohols.

Zhi-Lei WuAi-Ling GuNing GaoHui-Ya CuiWen-Min WangJian-Zhong Cui
Published in: Inorganic chemistry (2020)
Two structurally similar metal-organic frameworks (MOFs) [Dy2Cu4I3(IN)7(DMF)2]·DMF (1) and [Dy2Cu4I3(IN)7(DMA)2]·DMA (2) (HIN = isonicotinic acid) feathering different coordinated solvent molecules were successfully isolated by tuning the types of solvents in the reaction system. Structural tests indicate that 1 and 2 are both built from 1D Dy(III) chains and copper iodide clusters [Cu4I3], generating into three-dimensional frameworks with an open 1D channel along the a axis. 1 and 2 display extensive and excellent solvent stability. Magnetic studies of 1 and 2 indicate that they exhibit interesting solvent-dependent magnetization dynamics. Importantly, 1 and 2 can act as highly effective catalysts for the carboxylic cyclization of propargyl alcohols with carbon dioxide (CO2) under ambient operating conditions. Additionally, the substrate scope was further explored over compound 1 based on the optimal conditions, and it exhibits efficient cyclic carboxylation of various terminal propargylic alcohols with CO2. This research offers an effective approach for the solvent-guided synthesis of MOFs materials and also presents the great application value of MOFs in CO2 chemical conversion.
Keyphrases
  • metal organic framework
  • carbon dioxide
  • ionic liquid
  • single molecule
  • solar cells
  • molecularly imprinted
  • mass spectrometry
  • liquid chromatography
  • aqueous solution