Login / Signup

Antifouling Systems Based on a Polyhedral Oligomeric Silsesquioxane-Based Hexyl Imidazolium Salt Adsorbed on Copper Nanoparticles Supported on Titania.

Alessandro PresentatoEleonora La GrecaLuca ConsentinoRosa AlduinaLeonarda Francesca LiottaMichelangelo Gruttadauria
Published in: Nanomaterials (Basel, Switzerland) (2023)
The reaction of octakis(3-chloropropyl)octasilsesquioxane with four equivalents of 1-hexylimidazole or 1-decylimidazole gave two products labelled as HQ-POSS (hexyl-imidazolium quaternized POSS) and DQ-POSS (decyl-imidazolium quaternized POSS) as regioisomer mixtures. An investigation of the biological activity of these two compounds revealed the higher antimicrobial performances of HQ-POSS against Gram-positive and Gram-negative microorganisms, proving its broad-spectrum activity. Due to its very viscous nature, HQ-POSS was adsorbed in variable amounts on the surface of biologically active oxides to gain advantages regarding the expendability of such formulations from an applicative perspective. Titania and 5 wt% Cu on titania were used as supports. The materials 10HQ-POSS/Ti and 15HQ-POSS/5CuTi strongly inhibited the ability of Pseudomonas PS27 cells-a bacterial strain described for its ability to handle very toxic organic solvents and perfluorinated compounds-to grow as planktonic cells. Moreover, the best formulations (i.e., 10HQ-POSS/Ti and 15HQ-POSS/5CuTi) could prevent Pseudomonas PS27 biofilm formation at a certain concentration (250 μg mL -1 ) which greatly impaired bacterial planktonic growth. Specifically, 15HQ-POSS/5CuTi completely impaired cell adhesion, thus successfully prejudicing biofilm formation and proving its suitability as a potential antifouling agent. Considering that most studies deal with quaternary ammonium salts (QASs) with long alkyl chains (>10 carbon atoms), the results reported here on hexylimidazolium-based POSS further deepen the knowledge of QAS formulations which can be used as antifouling compounds.
Keyphrases