Login / Signup

Exploring Multitarget Strategies for Membrane Protection in Alzheimer's Disease.

Pablo Zambrano
Published in: ACS chemical neuroscience (2023)
The exploration of multitarget molecules presents a promising avenue in the quest for effective therapeutic strategies against Alzheimer's disease (AD), a multifactorial neurodegenerative disorder. Traditional single-target drugs have shown limited success due to the complex interplay of pathological processes involved in AD. Multitarget-directed ligands (MTDLs), designed to interact with multiple targets simultaneously, offer a more holistic approach to address the multifaceted nature of neurodegenerative diseases. Recent studies have highlighted the potential of chalcones and huprine derivatives in mitigating amyloid-β peptide-associated toxicity and preserving membrane integrity, crucial for cellular homeostasis. The interaction of these compounds with lipid bilayers may modulate biological responses, opening a new realm of investigation in membrane-centric phenomena. This approach not only broadens the mechanistic understanding of bioactive compounds but also underscores the need for a paradigm shift in AD research, focusing on both intracellular targets and plasma membrane protection for more effective treatment strategies.
Keyphrases
  • cognitive decline
  • oxidative stress
  • molecular dynamics simulations
  • reactive oxygen species