Login / Signup

N-Doped Porous Carbon Derived from Solvent-Free Synthesis of Cross-Linked Triazine Polymers for Simultaneously Achieving CO2 Capture and Supercapacitors.

Yuan WangJianfei XiaoHanzhi WangTian C ZhangShaojun Yuan
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
It is highly desirable to design advanced heteroatomic doped porous carbon for wide application. Herein, N-doped porous carbon (NPC) was developed via the fabrication of high nitrogen cross-linked triazine polymers followed by pyrolysis and activation with controllable porous structure. The as-synthesized NPC at the pyrolysis temperature of 700 °C possessed rich nitrogen content (up to 11.51 %) and high specific surface area (1353 m2  g-1 ), which led to a high CO2 adsorption capability at 5.67 mmol g-1 at 298.15 K and 5 bar pressure and excellent stability. When the activation temperature was at 600 °C, such NPC exhibited a superior electrochemical performance as anode for supercapacitors with a specific capacitance of 158.8 and 113 F g-1 in 6 M KOH at a current density of 1 and 10 A g-1 , respectively. Notably, it delivered an excellent stability with capacity retention of 97.4 % at 20 A g-1 after 6000 cycles.
Keyphrases