Login / Signup

Slit3 by PTH-Induced Osteoblast Secretion Repels Sensory Innervation in Spine Porous Endplates to Relieve Low Back Pain.

Janet L CraneWeixin ZhangArryn OtteSisir BarikMei WanXu Cao
Published in: Research square (2024)
During aging, the spine undergoes degenerative changes, particularly with vertebral endplate bone expansion and sclerosis, that is associated with nonspecific low back pain (LBP). We reported that parathyroid hormone (PTH) treatment could reduce vertebral endplate sclerosis and improve pain behaviors in aging, SM/J and young lumbar spine instability (LSI) mice. Aberrant innervation noted in the vertebral body and endplate during spinal degeneration was reduced with PTH treatment in aging and LSI mice as quantified by PGP9.5 + and CGRP + nerve fibers, as well as CGRP expression in dorsal root ganglia (DRG). The neuronal repulsion factor Slit3 significantly increased in response to PTH treatment mediated by transcriptional factor FoxA2. PTH type1 receptor (PPR) and Slit3 deletion in osteoblasts prevented PTH-reduction of endplate porosity and improvement in behavior tests, whereas PPR deletion in chondrocytes continued to respond to PTH. Altogether, PTH stimulates Slit3 to repel sensory nerve innervation and provides symptomatic relief of LBP associated with spinal degeneration.
Keyphrases