Geographic Patterns of Carbapenem-resistant Pseudomonas aeruginosa in the Asia-Pacific Region: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2015-2019.
Yu-Lin LeeWen-Chien KoPo-Ren HsuehPublished in: Antimicrobial agents and chemotherapy (2021)
Pseudomonas aeruginosa is a common pathogen that is associated with multidrug-resistant (MDR) and carbapenem-resistant (CR) phenotypes; therefore, we investigated its resistance patterns and mechanisms by using data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program in the Asia-Pacific region during 2015-2019. MICs were determined using the broth microdilution method. Genes encoding major extended-spectrum β-lactamases and carbapenemases were investigated by multiplex PCR assays. Susceptibility was interpreted using the Clinical and Laboratory Standards Institute (CLSI) breakpoints. A total of 6,349 P. aeruginosa isolates were collected in the ATLAS program between 2015 and 2019 from 14 countries. According to the CLSI definitions, the numbers (and rates) of CR and MDR P. aeruginosa were 1,198 (18.9%) and 1,303 (20.5%), respectively. For 747 of the CR P. aeruginosa strains that were available for gene screening, 253 β-lactamases genes were detected in 245 (32.8%) isolates. The most common gene was blaVIM (29.0, 71/245), followed by blaNDM (24.9%, 61/245) and blaVEB (20.8%, 51/245). The resistance patterns and associated genes varied significantly between the countries in the Asia-Pacific region. India had the highest rates of carbapenem resistance (29.3%, 154/525) and gene detection (17.7%, 93/525). Compared to those harboring either class A or B β-lactamase genes, the CR P. aeruginosa without detected β-lactamase genes had lower MICs for most of the antimicrobial agents, including ceftazidime/avibactam and ceftolozane/tazobactam. In conclusion, MDR and CR P. aeruginosa infections pose a major threat, particularly those with detected carbapenemase genes. Continuous surveillance is important for improving antimicrobial stewardship and antibiotic prescriptions.
Keyphrases
- multidrug resistant
- gram negative
- klebsiella pneumoniae
- genome wide
- genome wide identification
- acinetobacter baumannii
- pseudomonas aeruginosa
- drug resistant
- genome wide analysis
- escherichia coli
- public health
- bioinformatics analysis
- staphylococcus aureus
- quality improvement
- dna methylation
- copy number
- cystic fibrosis
- transcription factor
- mass spectrometry
- electronic health record
- deep learning
- candida albicans