Login / Signup

Testing the match-mismatch hypothesis in bighorn sheep in the context of climate change.

Limoilou-Amelie RenaudMarco Festa-BianchetFanie Pelletier
Published in: Global change biology (2021)
In species with long gestation, females commit to reproduction several months before parturition. If cues driving conception date are uncoupled from spring conditions, parturition could be mistimed. Mismatch may increase with global change if the rate of temporal changes in autumn cues differs from the rate of change in spring conditions. Using 17 years of data on climate and vegetation phenology, we show that autumn temperature and precipitation, but not vegetation phenology, explain parturition date in bighorn sheep. Although autumn cues drive the timing of conception, they do not predict conditions at parturition in spring. We calculated the mismatch between individual parturition date and spring green-up, assessed whether mismatch increased over time and investigated the consequences of mismatch on lamb neonatal survival, weaning mass and overwinter survival. Mismatch fluctuated over time but showed no temporal trend. Temporal changes in green-up date did not lead to major fitness consequence of mismatch. Detailed data on individually marked animals revealed no effect of mismatch on neonatal or overwinter survival, but lamb weaning mass was negatively affected by mismatch. Capital breeders might be less sensitive to mismatch than income breeders because they are less dependent on daily food acquisition. Herbivores in seasonal environments may access sufficient forage to sustain lactation before or after the spring 'peak' green-up, and partly mitigate the consequences of a mismatch. Thus, the effect of phenological mismatch on fitness may be affected by species life history, highlighting the complexity in quantifying trophic mismatches in the context of climate change.
Keyphrases
  • climate change
  • physical activity
  • mental health
  • preterm infants
  • mechanical ventilation
  • big data
  • high resolution
  • single cell
  • dairy cows
  • extracorporeal membrane oxygenation
  • preterm birth