Login / Signup

Boron Clusters Alter the Membrane Permeability of Dicationic Fluorescent DNA-Staining Dyes.

Yuya HiraiYoshimasa MakitaJun AsaokaYuka AoyagiAkihiro NomotoHideyuki OkamuraShin-Ichi Fujiwara
Published in: ACS omega (2023)
Membrane-permeable fluorescent dyes that stain DNA are useful reagents for microscopic imaging, as they can be introduced into living cells to label DNA. However, the number of these dyes, such as Hoechst 33342, is limited. Here, we show that the icosahedral dodecaborate B 12 Br 12 2- , a superchaotropic carrier that delivers different types of molecules into cells, functions as an excellent carrier for membrane-impermeable fluorescent dyes. Propidium iodide (PI) and 4',6-diamidino-2-phenylindole (DAPI), dicationic membrane-impermeable fluorescent dyes that stain DNA, can permeate cell membranes in the presence of boron clusters. Methyl green (MG), a dicationic dye used in the histological and fluorescent staining of DNA, permeated cell membranes in the presence of boron clusters. In contrast, monocationic membrane-permeable fluorescent dyes, such as acridine orange and pyronin Y, exhibited reduced fluorescence in cells in the presence of boron clusters. Boron clusters do not quench dicationic fluorescent dyes in water in vitro but have quenching effects on monocationic fluorescent dyes. We have demonstrated that the addition of B 12 Br 12 2- to impermeable dicationic fluorescent DNA-staining dyes, such as DAPI, PI, and MG, which have been widely used for numerous years, imparts membrane permeability to introduce these dyes into living cells.
Keyphrases