Login / Signup

Inverse probability weighted Cox regression for doubly truncated data.

Micha MandelJacobo de Uña-ÁlvarezDavid K SimonRebecca A Betensky
Published in: Biometrics (2017)
Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.
Keyphrases
  • electronic health record
  • big data
  • magnetic resonance
  • data analysis
  • magnetic resonance imaging
  • machine learning
  • contrast enhanced
  • neural network