Plant growth promotion and enhanced uptake of Cd by combinatorial application of Bacillus pumilus and EDTA on Zea mays L.
Kashif HayatSaiqa MenhasJochen BundschuhPei ZhouNabeel Khan Niazinull AmnaAmjad HussainSikandar HayatHazrat AliJuncai WangAmir Abdullah KhanAmjad AliFarooq Hussain MunisHassan Javed ChaudharyPublished in: International journal of phytoremediation (2020)
In developing countries, Cd contamination is ubiquitous which limits agriculture productivity. The current study was designed to investigate the efficacy of plant-Bacillus pumilus-ethylene diamine tetraacetic acid (EDTA) and plant-microbe-chelator (PMC) synergy for enhanced plant growth and Cd-uptake potential of Zea mays in industrially contaminated and cadmium (Cd) spiked soil. A pot experiment was conducted by growing Z. mays seedlings either inoculated with B. pumilus or un-inoculated along with the application of 5 mM EDTA. Plants were exposed to two levels of Cd contamination for 45 days. An increase in Cd uptake was observed in Z. mays inoculated with B. pumilus followed by EDTA treatment as compared to non-inoculated and un-treated ones. Zea mays showed improved values with PMC approach for different growth parameters including root length (41%), shoot length (40%), fresh weight (59%), dry weight (49%), chlorophyll contents (49%), and relative water contents (30%). Higher tolerance index (117%) was observed for plants grown in soil spiked with 300 mg kg-1 Cd (S2). PMC application markedly enhanced Cd uptake potential of Z. mays up to 12% and 68.8%, respectively, in S1 and S2 soil. While the PMC application increased Cd accumulation capacity of Z. mays by 71.2% and 52.5% in S1 and S2 soil. The calculated bioaccumulation and translocation factor revealed that Z. mays possess Cd uptake potential, and this ability can be significantly enhanced with PMC application.