Synthesis of Camphor-Derived Bis(pyrazolylpyridine) Rhodium(III) Complexes: Structure-Reactivity Relationships and Biological Activity.
Angelina PetrovićMilan M MilutinovićEdward T PetriMarko ŽivanovićNevena MilivojevićRalph PuchtaAndreas ScheurerJana KorzekwaOlivera R KlisurićJovana BogojeskiPublished in: Inorganic chemistry (2018)
Two novel rhodium(III) complexes, namely, [RhIII(X)Cl3] (X = 2 2,6-bis((4 S,7 R)-7,8,8-trimethyl-4,5,6,7-tetrahydro-1 H-4,7-methanoindazol-3-yl)pyridine or 2,6-bis((4 S,7 R)-1,7,8,8-tetramethyl-4,5,6,7-tetrahydro-1 H-4,7-methanoindazol-3-yl)pyridine), were synthesized from camphor derivatives of a bis(pyrazolylpyridine), tridentate nitrogen-donor chelate system, giving [RhIII(H2L*)Cl3] (1a) and [RhIII(Me2L*)Cl3] (1b). A rhodium(III) terpyridine (terpy) ligand complex, [RhIII(terpy)Cl3] (1c), was also synthesized. By single-crystal X-ray analysis, 1b crystallizes in an orthorhombic P212121 system, with two molecules in the asymmetric unit. Tridentate coordination by the N,N,N-donor localizes the central nitrogen atom close to the rhodium(III) center. Compounds 1a and 1b were reactive toward l-methionine (l-Met), guanosine-5'-monophosphate (5'-GMP), and glutathione (GSH), with an order of reactivity of 5'-GMP > GSH > l-Met. The order of reactivity of the RhIII complexes was: 1b> 1a > 1c. The RhIII complexes showed affinity for calf thymus DNA and bovine serum albumin by UV-vis and emission spectral studies. Furthermore, 1b showed significant in vitro cytotoxicity against human epithelial colorectal carcinoma cells. Since the RhIII complexes have similar coordination modes, stability differences were evaluated by density functional theory (DFT) calculations (B3LYP(CPCM)/LANL2DZp). With (H2L*) and (terpy) as model ligands, DFT calculations suggest that both tridentate ligand systems have similar stability. In addition, molecular docking suggests that all test compounds have affinity for the minor groove of DNA, while 1b and 1c have potential for DNA intercalation.
Keyphrases
- density functional theory
- molecular docking
- molecular dynamics
- circulating tumor
- ionic liquid
- molecular dynamics simulations
- cell free
- single molecule
- biofilm formation
- magnetic resonance imaging
- tyrosine kinase
- escherichia coli
- staphylococcus aureus
- climate change
- candida albicans
- circulating tumor cells
- computed tomography
- cystic fibrosis
- amino acid
- case control