Hypoxia and HIF-1α promote lytic de novo KSHV infection.
See-Chi LeeNenavath Gopal NaikDóra TombáczGábor GulyásBalázs KakukZsolt BoldogkőiKevin HallBernadett PappSteeve BoulantZsolt TothPublished in: Journal of virology (2023)
The impact of different stress conditions on the oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) primary infection that can occur in vivo remains largely unknown. We hypothesized that KSHV can establish a latency or lytic cycle following de novo infection, depending on the conditions of the cellular environment. Previous studies showed that hypoxia is a natural stress condition that promotes lytic reactivation and contributes to KSHV pathogenesis, but its effect on de novo KSHV infection is unknown. To test the effect of hypoxia on KSHV infection, we infected cells under normoxia and hypoxia, performed a comparative analysis of viral gene expression and viral replication, and tested chromatinization of the KSHV genome during infection. We found that hypoxia induces viral lytic gene expression and viral replication following de novo infection in several biologically relevant cell types, in which the virus normally establishes latency under normoxia. We also found that hypoxia reduces the level of repressive heterochromatin and promotes the formation of a transcriptionally permissive chromatin on the incoming viral DNA during infection. We demonstrate that silencing hypoxia-inducible factor-1α (HIF-1α) during hypoxia abrogates lytic KSHV infection, while the overexpression of HIF-1α under normoxia is sufficient to drive lytic KSHV infection. Also, we determined that the DNA-binding domain and the N-terminal but not the C-terminal transactivation domain of HIF-1α are required for HIF-1α-induced lytic gene expression. Altogether, our data indicate that HIF-1α accumulation, which can be induced by hypoxia, prevents the establishment of latency and promotes lytic KSHV infection following primary infection. IMPORTANCE The current view is that the default pathway of Kaposi's sarcoma-associated herpesvirus (KSHV) infection is the establishment of latency, which is a prerequisite for lifelong infection and viral oncogenesis. This view about KSHV infection is supported by the observations that KSHV latently infects most of the cell lines cultured in vitro in the absence of any environmental stresses that may occur in vivo . The goal of this study was to determine the effect of hypoxia, a natural stress stimulus, on primary KSHV infection. Our data indicate that hypoxia promotes euchromatin formation on the KSHV genome following infection and supports lytic de novo KSHV infection. We also discovered that hypoxia-inducible factor-1α is required and sufficient for allowing lytic KSHV infection. Based on our results, we propose that hypoxia promotes lytic de novo infection in cells that otherwise support latent infection under normoxia; that is, the environmental conditions can determine the outcome of KSHV primary infection.