Login / Signup

Synthesis, Crystal and Electronic Structures, and Optical Properties of (CH3NH3)2CdX4 (X = Cl, Br, I).

Rachel RoccanovaWenmei MingVincent R WhitesideMichael A McGuireIan R SellersMao-Hua DuBayrammurad Saparov
Published in: Inorganic chemistry (2017)
We report the synthesis, crystal and electronic structures, as well as optical properties of the hybrid organic-inorganic compounds MA2CdX4 (MA = CH3NH3; X = Cl, Br, I). MA2CdI4 is a new compound, whereas, for MA2CdCl4 and MA2CdBr4, structural investigations have already been conducted but electronic structures and optical properties are reported here for the first time. Single crystals were grown through slow evaporation of MA2CdX4 solutions with optimized conditions yielding mm-sized colorless (X = Cl, Br) and pale yellow (X = I) crystals. Single crystal and variable temperature powder X-ray diffraction measurements suggest that MA2CdCl4 forms a 2D layered perovskite structure and has two structural transitions at 283 and 173 K. In contrast, MA2CdBr4 and MA2CdI4 adopt 0D K2SO4-derived crystal structures based on isolated CdX4 tetrahedra and show no phase transitions down to 20 K. The contrasting crystal structures and chemical compositions in the MA2CdX4 family impact their air stabilities, investigated for the first time in this work; MA2CdCl4 is air-stable, whereas MA2CdBr4 and MA2CdI4 partially decompose when left in air. Optical absorption measurements suggest that MA2CdX4 have large optical band gaps above 3.9 eV. Room temperature photoluminescence spectra of MA2CdX4 yield broad peaks in the 375-955 nm range with full width at half-maximum values up to 208 nm. These PL peaks are tentatively assigned to self-trapped excitons in MA2CdX4 following the crystal and electronic structure considerations. The bands around the Fermi level have small dispersions, which is indicative of high charge localization with significant exciton binding energies in MA2CdX4. On the basis of our combined experimental and computational results, MA2CdX4 and related compounds may be of interest for white-light-emitting phosphors and scintillator applications.
Keyphrases