A New Generation of OPM for High Dynamic and Large Bandwidth MEG: The 4 He OPMs-First Applications in Healthy Volunteers.
Tjerk P GuttelingMathilde BonnefondTommy ClausnerSébastien DaligaultRudy RomainSergey MitryukovskiyWilliam FourcaultVincent JosselinMatthieu Le PradoAgustin Palacios-LaloyEtienne LabytJulien JungDenis SchwartzPublished in: Sensors (Basel, Switzerland) (2023)
MagnetoEncephaloGraphy (MEG) provides a measure of electrical activity in the brain at a millisecond time scale. From these signals, one can non-invasively derive the dynamics of brain activity. Conventional MEG systems (SQUID-MEG) use very low temperatures to achieve the necessary sensitivity. This leads to severe experimental and economical limitations. A new generation of MEG sensors is emerging: the optically pumped magnetometers (OPM). In OPM, an atomic gas enclosed in a glass cell is traversed by a laser beam whose modulation depends on the local magnetic field. MAG 4 Health is developing OPMs using Helium gas ( 4 He-OPM). They operate at room temperature with a large dynamic range and a large frequency bandwidth and output natively a 3D vectorial measure of the magnetic field. In this study, five 4 He-OPMs were compared to a classical SQUID-MEG system in a group of 18 volunteers to evaluate their experimental performances. Considering that the 4 He-OPMs operate at real room temperature and can be placed directly on the head, our assumption was that 4 He-OPMs would provide a reliable recording of physiological magnetic brain activity. Indeed, the results showed that the 4 He-OPMs showed very similar results to the classical SQUID-MEG system by taking advantage of a shorter distance to the brain, despite having a lower sensitivity.