The Therapeutic Effects of Curcumin-coated Gold Nanoparticle Against Leishmania Major Causative Agent of Zoonotic Cutaneous Leishmaniasis (ZCL): An In Vitro and In Vivo Study.
Seyed Mohammad AminiRamtin HadighiMehdi NajmMaryam AlipourHamid HasanpourMehran VosooghAraz VosoughMaryam HajizadehAlireza BadirzadehPublished in: Current microbiology (2023)
We synthesized and characterized curcumin-coated gold nanoparticles (Cur@AuNPs) and investigated their stability, cytotoxicity, leishmanicidal activity in in vitro and in in vivo experiments. Cur@AuNPs synthesized through a simple one-pot green chemistry technique. The in vitro leishmanicidal activity of curcumin-coated gold nanoparticles against extracellular promastigotes and intracellular amastigotes of protozoan parasite Leishmania major (L. major) was determined by applying the tetrazolium reduction colorimetric quantitative MTT technique. For in vivo assessment, the footpad lesion size and parasite burden in two infection site organs including lymph nodes and footpads of susceptible BALB/c mice infected with L. major were measured. Mice immune responses in all study groups were quantified by measuring the levels of gamma interferon (IFN-γ) and interleukin-4 (IL-4). Viability of Leishmania promastigotes significantly diminished with the inhibition in promastigotes growth (IC 50 ) of 64.79 μg/mL and 29.89 μg/mL for 24 h and 48 h, respectively. In vitro nanoparticles treatment efficiently cleared the L. major amastigotes explanted in macrophages but had no harmful toxicity on the mice cells. In the in vivo condition, in the treated infected BALB/c mice the CL lesion size, Leishmania parasite burden, and IL-4 were decreased, while IFN-γ was significantly increased. The results suggest that Cur@AuNP was an effective compound against Leishmania parasite in vitro and in vivo, efficiently induced T-helper 1 (Th1) responses and augmented host cellular immune responses, and ending in a reduced Leishmania parasite burden. Therefore, it may be identified as a novel potential therapeutic approach for the local therapy of zoonotic CL treatment with high cure rates.
Keyphrases
- gold nanoparticles
- immune response
- plasmodium falciparum
- dendritic cells
- high fat diet induced
- toxoplasma gondii
- trypanosoma cruzi
- lymph node
- life cycle
- risk factors
- induced apoptosis
- toll like receptor
- reduced graphene oxide
- oxidative stress
- insulin resistance
- high glucose
- endothelial cells
- cell death
- rectal cancer
- skeletal muscle
- reactive oxygen species
- endoplasmic reticulum stress
- cell therapy
- drug induced
- mass spectrometry
- newly diagnosed