Predicting CT-Based Coronary Artery Disease Using Vascular Biomarkers Derived from Fundus Photographs with a Graph Convolutional Neural Network.
Fan HuangJie LianKei-Shing NgKendrick Co ShihVarut VardhanabhutiPublished in: Diagnostics (Basel, Switzerland) (2022)
The study population contains 145 patients who were prospectively recruited for coronary CT angiography (CCTA) and fundoscopy. This study first examined the association between retinal vascular changes and the Coronary Artery Disease Reporting and Data System (CAD-RADS) as assessed on CCTA. Then, we developed a graph neural network (GNN) model for predicting the CAD-RADS as a proxy for coronary artery disease. The CCTA scans were stratified by CAD-RADS scores by expert readers, and the vascular biomarkers were extracted from their fundus images. Association analyses of CAD-RADS scores were performed with patient characteristics, retinal diseases, and quantitative vascular biomarkers. Finally, a GNN model was constructed for the task of predicting the CAD-RADS score compared to traditional machine learning (ML) models. The experimental results showed that a few retinal vascular biomarkers were significantly associated with adverse CAD-RADS scores, which were mainly pertaining to arterial width, arterial angle, venous angle, and fractal dimensions. Additionally, the GNN model achieved a sensitivity, specificity, accuracy and area under the curve of 0.711, 0.697, 0.704 and 0.739, respectively. This performance outperformed the same evaluation metrics obtained from the traditional ML models ( p < 0.05). The data suggested that retinal vasculature could be a potential biomarker for atherosclerosis in the coronary artery and that the GNN model could be utilized for accurate prediction.
Keyphrases
- coronary artery disease
- convolutional neural network
- diabetic retinopathy
- optical coherence tomography
- percutaneous coronary intervention
- cardiovascular events
- coronary artery bypass grafting
- coronary artery
- neural network
- machine learning
- deep learning
- high resolution
- computed tomography
- optic nerve
- big data
- aortic stenosis
- cardiovascular disease
- electronic health record
- magnetic resonance imaging
- emergency department
- case report
- acute coronary syndrome
- clinical practice
- adverse drug
- pulmonary arterial hypertension