Login / Signup

Cellular Composition and Proliferation Levels in the Hematopoietic Tissue of Black Scorpionfish (Scorpaena porcus L.) Head Kidney and Spleen During the Spawning and Wintering Periods.

Aleksandra Yu AndreyevaTatiana A KukharevaAlexander A Soldatov
Published in: Anatomical record (Hoboken, N.J. : 2007) (2018)
To identify cells and analyze proliferative activity of hematopoietic tissue, black scorpionfish head kidney and spleen cells were characterized by light microscopy and flow cytometry. Hematopoiesis of black scorpionfish head kidney was formed by the following series: erythropoietic, granulopoietic, lymphopoietic, and thrombopoietic. Flow cytometric analysis allowed dividing blood cells in hematopoietic organs into subpopulations differing by size, granularity, and proliferative activity. Three distinct subpopulations were observed during the wintering period. The number of small low-granulated cells, identified as lymphocytes and thrombocytes, was 41% ± 4% in both wintering and spawning fish. Proliferating subpopulation of blast (high-granulated) cells amounted to about 36% of the total cell count with 50% ± 5% of proliferating cells; the largest low-granulated cells (10% of total cells) comprised maturing white blood cells, monocytes, and macrophages. The spawning period was accompanied with an increase of maturing neutrophils and enhancement of blast cell proliferation. In the spleen three distinct subpopulations were observed. The subpopulation of small low-granulated cells comprised lymphocytes and thrombocytes similar to the head kidney and amounted 33% ± 4%. Other cells with larger diameter were identified as red blood cells. No proliferation was observed during the wintering period in the spleen, however, spawning induced cell proliferation of erythroblasts (small granulated cells) with the number of dividing cells 84% ± 1%. Anat Rec, 302:1136-1143, 2019. © 2018 Wiley Periodicals, Inc.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • cell proliferation
  • oxidative stress
  • immune response
  • bone marrow
  • pi k akt
  • flow cytometry
  • single molecule