Solvent effects on the photooxidation of indolepyrazines.
Barbara GolecAleksander GorskiRandolph P ThummelMaciej SierakowskiJacek WalukPublished in: Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology (2022)
Photodestruction of 2-(pyrazin-2'-yl)-1H-indole and 2,5-di(1H-indol-2'-yl)pyrazine involves singlet oxygen generation and its rapid insertion into the indole ring with the formation of benzoxazinone derivatives: 2-(pyrazin-2-yl)-4H-3,1-benzoxazin-4-one and 2-[5-(1H-indol-2-yl)pyrazin-2-yl]-4H-3,1-benzoxazin-4-one. The quantum yield of this reaction strongly depends on the environment. It is definitely smaller in protic methanol than in aprotic acetonitrile or n-hexane. The observed effect of photostabilization is explained by formation of hydrogen bonded complexes between the chromophore and alcohol, which results in lower triplet formation efficiency and, in consequence, decrease of singlet oxygen formation quantum yield.