Login / Signup

Structural insights into the role of DNA-PK as a master regulator in NHEJ.

Siyu ChenJames P Lees-MillerYuan HeSusan P Lees-Miller
Published in: Genome instability & disease (2021)
DNA-dependent protein kinase catalytic subunit DNA-PKcs/PRKDC is the largest serine/threonine protein kinase of the phosphatidyl inositol 3-kinase-like protein kinase (PIKK) family and is the most highly expressed PIKK in human cells. With its DNA-binding partner Ku70/80, DNA-PKcs is required for regulated and efficient repair of ionizing radiation-induced DNA double-strand breaks via the non-homologous end joining (NHEJ) pathway. Loss of DNA-PKcs or other NHEJ factors leads to radiation sensitivity and unrepaired DNA double-strand breaks (DSBs), as well as defects in V(D)J recombination and immune defects. In this review, we highlight the contributions of the late Dr. Carl W. Anderson to the discovery and early characterization of DNA-PK. We furthermore build upon his foundational work to provide recent insights into the structure of NHEJ synaptic complexes, an evolutionarily conserved and functionally important YRPD motif, and the role of DNA-PKcs and its phosphorylation in NHEJ. The combined results identify DNA-PKcs as a master regulator that is activated by its detection of two double-strand DNA ends for a cascade of phosphorylation events that provide specificity and efficiency in assembling the synaptic complex for NHEJ.
Keyphrases
  • circulating tumor
  • protein kinase
  • cell free
  • single molecule
  • nucleic acid
  • transcription factor
  • oxidative stress
  • dna damage
  • small molecule
  • human immunodeficiency virus
  • high glucose
  • editorial comment
  • tyrosine kinase