Login / Signup

Cluster-based stability evaluation in time series data sets.

Gerhard KlassenMartha TatuschStefan Conrad
Published in: Applied intelligence (Dordrecht, Netherlands) (2022)
In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call Cl uster O ver-Time S tability E valuation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS ( F uzzy C lustering S tability E valuation of T ime S eries). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set.
Keyphrases
  • data analysis
  • electronic health record
  • machine learning
  • big data
  • deep learning
  • single cell
  • healthcare
  • dna methylation
  • artificial intelligence
  • social media
  • quality improvement