Login / Signup

Genomic and transcriptomic analyses of chitin metabolism enzymes in Tenebrio molitor.

Lu LiYu-Qin WangGuang-Ya LiQi-Sheng SongDavid StanleyShu-Jun WeiJia-Ying Zhu
Published in: Archives of insect biochemistry and physiology (2022)
Chitin is of great importance in the cuticle and inner cuticular linings of insects. Chitin synthases (CHSs), chitin deacetylases (CDAs), chitinases (CHTs), and β-N-acetylhexosaminidases (HEXs) are important enzymes required for chitin metabolism, and play essential roles in development and metamorphosis. Although chitin metabolism genes have been well characterized in limited insects, the information in the yellow mealworm, Tenebrio molitor, a model insect, is presently still unavailable. With the help of bioinformatics, we identified 54 genes that encode putative chitin metabolism enzymes, including 2 CHSs, 10 CDAs, 32 CHTs, and 10 HEXs in the genome of T. molitor. All these genes have the conserved domains and motifs of their corresponding protein family. Phylogenetic analyses indicated that CHS genes were divided into two groups. CDA genes were clustered into five groups. CHT genes were phylogenetically grouped into 11 clades, among which 1 in the endo-β-N-acetylglucosaminidases group and the others were classified in the glycoside hydrolase family 18 groups. HEX genes were assorted into six groups. Developmental and tissue-specific expression profiling indicated that the identified chitin metabolism genes showed dynamical expression patterns concurrent with specific instar during molting period, suggesting their significant roles in molting and development. They were predominantly expressed in different tissues or body parts, implying their functional specialization and diversity. The results provide important information for further clarifying their biological functions using the yellow mealworm as an ideal experimental insect.
Keyphrases
  • genome wide
  • genome wide identification
  • bioinformatics analysis
  • gene expression
  • genome wide analysis
  • healthcare
  • radiation therapy
  • single cell
  • binding protein
  • zika virus
  • long non coding rna
  • rna seq