Synergistic Suppression of Tumor Angiogenesis by the Co-delivering of Vascular Endothelial Growth Factor Targeted siRNA and Candesartan Mediated by Functionalized Carbon Nanovectors.
Xuefang DingYujie SuCheng WangFangrong ZhangKerong ChenYu WangMin LiWei WangPublished in: ACS applied materials & interfaces (2017)
Single-walled carbon nanotubes (SWNTs) with unique physicochemical properties have exhibited promising biomedical applications as drug and gene carriers. In this study, polyethylenimine (PEI)-modified SWNT conjugates linked with candesartan (CD) were developed to deliver vascular endothelial growth factor (VEGF)-targeted siRNA (siVEGF) for the synergistic and targeted treatment of tumor angiogenesis. The characterization results revealed that SWNT-PEI-CD conjugates were successfully synthesized and exhibited desirable dispersibility and superior stability. Confocal laser scanning microscopy (CLSM) and flow cytometry (FCM) results showed that SWNT-PEI-CD/siVEGF complexes could achieve high cellular uptake and specific intracellular distribution of siRNA in AT1R overexpressed PANC-1 cells. Strong down-regulation of VEGF was also verified by qualitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot in complex-treated PANC-1 cells. The in vitro angiogenesis assay showed that SWNT-PEI-CD/siVEGF complexes highly inhibited tube formation of human umbilical vein endothelial cells. Furthermore, in vivo observation in PANC-1 xenografted nude mice demonstrated that SWNT-PEI-CD/siVEGF complexes exhibited significant distribution at tumor sites and caused obvious inhibition of tumor growth and tumor-associated angiogenesis repression induced by the drug combination of CD and siVEGF. Finally, a WST-1 assay indicated that SWNT-PEI-CD possessed low cytotoxicity, and a hemolysis test showed good biocompatibility of SWNT-PEI-CD. Hematological and histological analyses confirmed that SWNT-PEI-CD/siVEGF complexes did not cause any obvious toxic effects to blood and major organs. These findings suggested that the SWNT-PEI-CD/siVEGF co-delivery system with tumor-targeting specificity, improved endosomal escaping properties, and collaboration of angiogenesis inhibition could be a prospective method for efficient tumor antiangiogenic therapy.
Keyphrases
- vascular endothelial growth factor
- endothelial cells
- cancer therapy
- nk cells
- high throughput
- systematic review
- induced apoptosis
- emergency department
- drug delivery
- gene expression
- cell proliferation
- optical coherence tomography
- type diabetes
- cell cycle arrest
- mass spectrometry
- cell death
- drug induced
- insulin resistance
- reactive oxygen species
- smoking cessation