Case report: relevance of metabolite identification to detect new synthetic opioid intoxications illustrated by U-47700.
Camille RichevalJean-Michel GaulierLudovic RomeufDelphine AllorgeYvan GaillardPublished in: International journal of legal medicine (2018)
Today, new psychoactive substances (NPS) producers increasingly appear to be targeting new synthetic opioids (NSOs), and the recent emergence of NSOs is causing considerable concern in North America and in Europe. For toxicologists, NSO detection in a forensic context presents three additional difficulties to the general NPS analytical detection challenge: (i) high frequency of new products, (ii) low concentrations (in μg/L range and under) in biological samples related to their high opioid potency, and (iii) extensive metabolism. In this context, the present work aims to highlight the relevance of NSO metabolite detection in potential intoxication cases. Illustration is given with U-47700, an emerging NSO, (i) that was identified in a powder recently collected in France and in a fatality case, (ii) whose metabolites were in vitro produced using human liver microsomes and their mass spectra (MS) added in our MS/MS and HRMS libraries, and (iii) for which metabolism data were compared to those of the literature: U-47700 was identified in the powder and at 3040 μg/L in peripheral blood in the fatality case. In addition, high amounts of several U-47700 metabolites, especially N-desmethyl-U-47700, were observed in urine. Even if metabolite formation may largely depend on the enzymatic activity as well as on the length of the survival time, confrontation of these results to data found in the literature strongly suggests that this metabolite is regularly a better blood and (mainly) urine biomarker of U-47700 intake than U-47700 itself. Indeed, in this fatality and in other previous reports, N-desmethyl-U-47700 produced the main observed chromatographic signal (i) systematically in vitro and (ii) commonly in vivo, especially in urines. N,N-Didesmethyl-U-47700 is also sometimes a better biomarker of U-47700 intake than U-47700 itself. Accordingly, we suggest adding N-desmethyl-U-47700 (and N,N-didesmethyl-U-47700) in mass spectrum databases used for toxicological screening in order to reduce the risk of false-negative results in intoxication cases involving U-47700.
Keyphrases
- ms ms
- high frequency
- chronic pain
- pain management
- peripheral blood
- loop mediated isothermal amplification
- systematic review
- case report
- big data
- transcranial magnetic stimulation
- real time pcr
- label free
- electronic health record
- mass spectrometry
- liquid chromatography tandem mass spectrometry
- drinking water
- cancer therapy
- weight gain
- machine learning
- weight loss
- simultaneous determination
- sensitive detection
- nitric oxide
- artificial intelligence
- high performance liquid chromatography
- deep learning