Login / Signup

The role of climate change and niche shifts in divergent range dynamics of a sister-species pair.

Jeremy SummersDieter LukasCorina J LoganNancy Chen
Published in: Peer community journal (2023)
Species ranges are set by limitations in factors including climate tolerances, habitat use, and dispersal abilities. Understanding the factors governing species range dynamics remains a challenge that is ever more important in our rapidly changing world. Species ranges can shift if environmental changes affect available habitat, or if the niche or habitat connectivity of a species changes. We tested how changes in habitat availability, niche, or habitat connectivity could contribute to divergent range dynamics in a sister-species pair. The great-tailed grackle ( Quiscalus mexicanus ) has expanded its range northward from Texas to Nebraska in the past 40 years, while its closest relative, the boattailed grackle ( Quiscalus major ), has remained tied to the coasts of the Atlantic Ocean and the Gulf of Mexico as well as the interior of Florida. We created species distribution and connectivity models trained on citizen science data from 1970-1979 and 2010-2019 to determine how the availability of habitat, the types of habitat occupied, and range-wide connectivity have changed for both species. We found that the two species occupy distinct habitats and that the great-tailed grackle has shifted to occupy a larger breadth of urban, arid environments farther from natural water sources. Meanwhile, the boattailed grackle has remained limited to warm, wet, coastal environments. We found no evidence that changes in habitat connectivity affected the ranges of either species. Overall, our results suggest that the great-tailed grackle has shifted its realized niche as part of its rapid range expansion, while the range dynamics of the boat-tailed grackle may be shaped more by climate change. The expansion in habitats occupied by the great-tailed grackle is consistent with observations that species with high behavioral flexibility can rapidly expand their geographic range by using human-altered habitat. This investigation identifies how opposite responses to anthropogenic change could drive divergent range dynamics, elucidating the factors that have and will continue to shape species ranges.
Keyphrases
  • climate change
  • human health
  • endothelial cells
  • dna methylation
  • body composition
  • quantum dots