Comparison of adsorption behavior studies of methylene blue by microalga residue and its biochars produced at different pyrolytic temperatures.
Zijun YangJun HouLingzhan MiaoJun WuPublished in: Environmental science and pollution research international (2020)
The adsorption behaviors of methylene blue (MB) on microalga residue powder (MRP) and biochars derived from microalga residue (MRB) produced at different pyrolytic temperatures were compared. Six biochars were prepared from residual Chlorella sp. and Spirulina sp. at different pyrolytic temperatures in the range of 200-550 °C. The adsorption kinetics, isotherms, thermodynamics, and the effect of pH were studied, and chemical analyses of MB-loaded MRP and MRB were conducted using SEM, FTIR, and XPS techniques. The results found that the pseudo-second-order, Elovich, and Freundlich models could effectively describe the MB adsorption process on MRP and MRB. The thermodynamic results confirmed that the adsorption processes were spontaneous and endothermic. Further, MRP showed an excellent adsorption ability on MB through electrostatic interaction, complexation with oxygen/nitrogen-containing functional groups and π-π interaction. However, massive oxygen-containing functional groups after pyrolysis were lost, leading to a significant decrease in the adsorption capacity of MRB on MB. This phenomenon was further observed with increasing pyrolytic temperature. Overall, this study demonstrated that microalga residue performed better for MB removal compared with their pyrolyzed analogs. Graphical abstract.